Search This Blog

Sunday, July 05, 2009

Station Crew Completes Soyuz Move















The Expedition 20 crew members aboard the orbiting International Space Station were busy Thursday making last minute preparations for the relocation of the Soyuz TMA-14 spacecraft.

Commander Gennady Padalka and flight engineers Mike Barratt and Koichi Wakata undocked the spacecraft from the aft port of the Zvezda service module at 5:29 p.m. EDT and piloted it over to the Pirs docking compartment, redocking the vehicle at 5:55 p.m. The move clears the way for the arrival of the ISS Progress 34 supply ship, which is scheduled to arrive later this month.

Flight engineers Frank De Winne, Bob Thirsk and Roman Romanenko remained inside the station during the move to assist the Soyuz crew during the maneuver and to monitor station systems.

Crew members adjusted their sleep schedule Thursday to accommodate the late start time of the move. A wake up time of 9:30 a.m. set in motion final preparations for Padalka, Barratt and Wakata, including closing the hatches, conducting leak checks and donning their Sokol launch and entry suits.

Throughout the week, crew members set up camera and video equipment to monitor the move and reviewed Soyuz relocation procedures with specialists at the Russian Mission Control Center.

Over the weekend, crew members will make preparations for the upcoming STS-127 mission as well as continue their regular maintenance, housekeeping and exercise activities. They also will enjoy some off-duty time and have an opportunity to speak with family members.

Free Spirit: Test Rover Rolls In











After several days of preparing a sloped area of soft, fine soil to simulate Spirit's current sandtrap on Mars, the rover team drove a test rover into the material on June 30, 2009. The test rover became embedded in the soil, as planned. The rover team will use this setup at NASA's Jet Propulsion Laboratory, Pasadena, Calif., during the next few weeks to test possible extraction moves Spirit might use on Mars.

Five Years Ago, Cassini Began Orbiting Saturn











NASA's Cassini mission has been orbiting Saturn for five Earth years as of June 30, 2009. That's about one sixth of a Saturnian year, enough time for the spacecraft to have observed seasonal changes in the planet, its moons and sunlight's angle on the dramatic rings.

Cassini passed through a gap in the rings as it entered orbit on June 30, 2004. It finished its prime mission in 2008 and continues to use its 12 instruments in an extended mission that includes extensive further studies of the moons Titan and Enceladus.

NASA, Japan Release Most Complete Topographic Map of Earth











PASADENA, Calif. – NASA and Japan released a new digital topographic map of Earth Monday that covers more of our planet than ever before. The map was produced with detailed measurements from NASA's Terra spacecraft.

The new global digital elevation model of Earth was created from nearly 1.3 million individual stereo-pair images collected by the Japanese Advanced Spaceborne Thermal Emission and Reflection Radiometer, or Aster, instrument aboard Terra. NASA and Japan's Ministry of Economy, Trade and Industry, known as METI, developed the data set. It is available online to users everywhere at no cost.

"This is the most complete, consistent global digital elevation data yet made available to the world," said Woody Turner, Aster program scientist at NASA Headquarters in Washington. "This unique global set of data will serve users and researchers from a wide array of disciplines that need elevation and terrain information."

According to Mike Abrams, Aster science team leader at NASA's Jet Propulsion Laboratory in Pasadena, Calif., the new topographic information will be of value throughout the Earth sciences and has many practical applications. "Aster's accurate topographic data will be used for engineering, energy exploration, conserving natural resources, environmental management, public works design, firefighting, recreation, geology and city planning, to name just a few areas," Abrams said.

Previously, the most complete topographic set of data publicly available was from NASA's Shuttle Radar Topography Mission. That mission mapped 80 percent of Earth's landmass, between 60 degrees north latitude and 57 degrees south. The new Aster data expand coverage to 99 percent, from 83 degrees north latitude and 83 degrees south. Each elevation measurement point in the new data is 30 meters (98 feet) apart.

"The Aster data fill in many of the voids in the shuttle mission's data, such as in very steep terrains and in some deserts," said Michael Kobrick, Shuttle Radar Topography Mission project scientist at JPL. "NASA is working to combine the Aster data with that of the Shuttle Radar Topography Mission and other sources to produce an even better global topographic map."

NASA and METI are jointly contributing the Aster topographic data to the Group on Earth Observations, an international partnership headquartered at the World Meteorological Organization in Geneva, Switzerland, for use in its Global Earth Observation System of Systems. This "system of systems" is a collaborative, international effort to share and integrate Earth observation data from many different instruments and systems to help monitor and forecast global environmental changes.

NASA, METI and the U.S. Geological Survey validated the data, with support from the U.S. National Geospatial-Intelligence Agency and other collaborators. The data will be distributed by NASA's Land Processes Distributed Active Archive Center at the U.S. Geological Survey's Earth Resources Observation and Science Data Center in Sioux Falls, S.D., and by METI's Earth Remote Sensing Data Analysis Center in Tokyo.

Aster is one of five Earth-observing instruments launched on Terra in December 1999. Aster acquires images from the visible to the thermal infrared wavelength region, with spatial resolutions ranging from about 15 to 90 meters (50 to 300 feet). A joint science team from the U.S. and Japan validates and calibrates the instrument and data products. The U.S. science team is located at JPL.

Wednesday, July 01, 2009

Next Stop,the Moon


















Our two missions readying for launch will provide data that will be useful for future exploration of the moon. LRO carries a full suite of instruments to tell us more about the moon than we've ever known before. Want to travel there someday? Even if you can't, LRO will send the data to create high resolution 3-D topographic maps that will give us a detailed understanding of the lunar terrain and possibly help future explorers decide where to land. One instrument carries a plastic that resembles human tissue that will help us understand how the lunar radiation environment can affect living organisms. LRO is a bit nosy and will perpetually peer into permanently shadowed craters, sometimes using only the starlight as a guide. And it can tell us about the peaks where the sun never sets, too. These could be valuable for solar power if people learn how to stay on the moon long term.

And 1.6 million passengers will go along with LRO. The microchip with all the names from around the world that were collected in the Send Your Name to the Moon campaign are securely onboard and ready to go out into the cosmos.

LCROSS is a foot soldier with a more finite and focused mission. For four months, it's going to hold on to the spent upper stage Centaur rocket that lofted it and LRO out of Earth orbit (something that has never before been done with a Centaur). LCROSS will then separate from the Centaur and send the 42 foot, 5200 pound rocket directly into the moon to create one of the biggest man made fireworks in history. The moon won't be harmed, but a crater 66 feet wide and 13 deep will send up a plume of material that hasn't seen the light of day perhaps for billions of years. In the refracted sunlight, LCROSS will quickly scan for water ice and other mineralogical data before heading for an impact on the moon's surface itself.

Next Stop,the Moon















Two boxy little satellites colored gold and bronze that represent NASA's return to the moon have reached the final stop before their big day. The Lunar Reconnaissance Orbiter and the Lunar Crater Observation and Sensing Satellite are stacked and mated aboard their Atlas V rocket and now waiting in the wings for rollout to the launch pad on June 16. After one more night on Earth, the companions will blast off for the moon June 17.

Two satellites outfitted with high-tech instrumentation, looking fairly clunky here on Earth will soon slip the bonds of Earth's gravity and travel weightlessly to their final destinations, the moon. NASA is sending these satellites to the moon to learn more about our home planet's nearest neighbor, which is also a geological wonderland. Did you know the moon has mountains that are many miles high, lava flows several hundred miles long and enormous lava tubes and craters of every size?

Followers

free counters